Menü Üye Giriş

Şifre Sıfırla · Kayıt Ol

 SOL PAYLAŞIM  »
 Forum Arşivi

Yıldızlararası (Interstellar) Filminin Bilimsel Arkaplanı ve Kuramsal Analizi

Evrim Ağacı olarak Yıldızlararası (Interstellar) isimli filmin bilimsel bir analizini buradaki yazımızda sunmuştuk. Ancak ülkemizin en önde gelen fizikçilerinden olan Doç. Dr. Kerem Cankoçak tarafından çok daha da teknik bir analiz kaleme alındı ve hem buradaki blogunda, hem de Delikasap sitesinde yayınlandı. Kerem hocamızın bu makalesinde, filmde yer alan çok sayıda fizik ve astrofizik kuramına detaylıca yer veriliyor ve tarihi arkaplanıyla birlikte ele alınıyor. Dolayısıyla bu analiz, sadece bir "film analizi" olmaktan öte, modern bilimin bir kısmının harika bir özeti görevi görüyor! Biz de, Evrim Ağacı olarak sevgili Kerem hocamız böyle bir analiz hazırlamışken, birçok konuyu öğrenip irdeleyebileceğiniz bu harika makaleyi okurlarımızla paylaşmak istedik.

Umarız faydalı olur, iyi okumalar.

Resim Ekleme

Kasım 2014'te vizyona giren Yıldızlararası (Interstellar) filmi, izleyeciler tarafından büyük beğeni aldı. Ayrıca filmin gerek içeriği, gerekse görsel yapısı, bilime yaptığı katkılarıyla da ses getirdi. Bu yazıda filmin kurgusuna pek dokunmadan, filmin bilimsel arkaplanına göz atmaya çalışacağız.

Filmin bilim danışmanı (ve aynı zamanda yapımcılarından olan) Kip Thorne ünlü bir fizikçi. Filmle aynı tarihte piyasa bir kitap çıkardı: The Science Of Interstellar (Yıldızlararası’nın Bilimi). Alfa Bilim dizisinden basıma hazırlanan bu kitapta filmdeki hemen her bir sahne anlatılmış ve açıklanmış. Yerimiz dar olduğundan kitaptaki önemli yerleri aktaracağımız bu yazıda, mümkün olduğunca filmi anlamamız için gereken fizik alt yapısı verilmeye çalışılacak. Bu yazıdaki görsellerin bir kısmı, ikisi de Alfa Bilim dizisinden çıkmış olan Stephen Hawking’in Zamanın Kısa Tarihi ve John Gribbin’in Çoklu Evrenler kitaplarından diğerleriyse Kip Thorne’un kitabından alınmıştır.

Öncelikle Kip Thorne’dan söz edelim biraz. Amerikan Bilimler Akademisi, Ulusal Bilimler Akademisi, Rus Bilimler Akademisi, Amerikan Felsefe Derneği gibi en önde gelen bilim ve felsefe gruplarına üyeliği bulunan   Prof. Thorne’un aldığı birçok ödülden birisi de 2009 yılında aldığı Albert Einstein Madalyası'dır. Prof. Thorne kütleçekim ve astrofizik konularında çalışmış ve California Teknoloji Enstitüsünde 2009 yılına kadar Feynman Teorik Fizik Profesörlüğü unvanını taşımıştır. Genel Görelilik Teorisi   üzerine yazdığı yüzlerce makale ve kitapla dünyanın   önde gelen araştırmacılarından biri olmuştur.

Kip Thorne’un danışmanlığında kurgulanan film baştan sona bilimsel kuramlara dayanmakta. Fantezi öğeleri yok filmde. Ancak bu bilimsel kuramların hepsi aynı türden değil. Kip Thorne Yıldızlararası’nın Bilimi kitabında bilimsel kuramları üçe ayırıyor: İlki, kanıtlanmış bilimsel gerçekler (görelilik kuramı, kuantum kuramı vb gibi). İkincisi ise henüz kanıtlanmasa bile kanıtlanacağına kesin gözüyle bakılanlar (örneğin henüz Mars’a insan gönderemediysek de yakın bir zamanda göndereceğimiz kesin). Üçüncü tür bilimsel kuramlarsa, diğer bilimsel kuramlarla çelişmeyen ancak henüz kanıtlanmamış kuramlar (sicim kuramları, 5 veya 11 boyutlu uzayzaman vb gibi). Bu kuramların doğrulanacağına dair bir kanıt yok elimizde. Ancak diğer kuramlarla uyum içinde olduklarından bunlara fantezi veya hayal ürünü olarak bakamayız. Belki ilerde yanlışlanacaklar ve yerlerini başka kuramlara bırakacaklar ama şu anda bunları kullanarak evrene ilişkin bazı olguları açıklamaya çalışmakta bir sakınca yok. Sonuçta bu bir film, eğlenceli ve ufuk açıcı olması gerekiyor.

Filmin önemli bir kısmı bu üçüncü türden henüz kanıtlanmamış bilimsel kuramlara dayanıyor. Bunları anlatmadan önce, günümüz fiziğinin temellerini oluşturan kanıtlanmış kuramlara hızlıca bir göz atmamız gerekiyor.

1) Filmde Yer Alan, Kanıtlanmış Bilimsel Kuramlar


Görelilik

Einstein’ın 1905’te ortaya koyduğu özel görelilik kuramının temel postülası, fizik yasalarının serbest hareket eden tüm gözlemciler için hızları ne olursa olsun aynı olması gerektiğidir. Aslında Newton’ın hareket yasalarında da yer olan bu fikir Einstein tarafından Maxwell’in kuramını ve ışık hızını da kapsayacak şekilde genişletildi. Buna göre tüm gözlemciler ne hızla hareket ederlerse etsinler ışık hızını aynı ölçmelidirler.   Bu basit fikir,   kütle ile enerjinin denkliği (E=mc2) gibi çığır açıcı sonuçlara yol açmıştır. Işık hızının yüzde 90’ıyla yol alan cisim durgun kütlesinin iki katına ulaşır. Cisim asla ışık hızına ulaşamaz, çünkü ulaştığında kütlesinin de sonsuz olması gerekir. Göreliliğin bir diğer önemli sonucu da uzay ve zaman hakkında tamamen yeni bir yaklaşım getirmiş olmasıdır. Eşzamanlılık diye bir kavram yoktur artık. Görelilik kuramı mutlak zaman fikrine son vermektedir. Her gözlemci kendi ölçümüne sahiptir ve farklı gözlemcilerin taşıdığı özdeş saatler aynı sonucu vermek zorunda değildir. Örneğin aynı yaştaki ikizlerden biri bir uzay gemisine binip, ışık hızına yakın bir hızda başka bir gezegene gitse, dünyadaki ikizinden daha genç olarak geri gelir. Bütün bunlar deneylerle kanıtlanmış bilimsel gerçeklerdir.

Uzayda bir kaynaktan belirli bir zamanda yayılan ışık sinyali zaman geçtikçe, boyutu ve konumu kaynağın hızından bağımsız olarak bir ışık küresi biçimindedir. Işık dalgası zaman geçtikçe büyüyen bir çember şeklinde genişler. Bu durumu biri uzay (x-ekseni) diğeri zaman (y-ekseni) olmak üzere iki boyutlu bir grafikte gösterirsek,   sıfır noktasında (kaynakta) birleşen ve yukarıya doğru genişleyen bir üçgen elde ederiz. 4-boyutta çizemeyeceğimiz için uzay boyutunu ikiye indirip 3-boyutta çizersek bir koni elde ederiz (Şekil 1).

Resim Ekleme
Şekil 1

Koninin üst kısmına olayın gelecekteki ışık konisi adı verilir. Aynı şekilde, ışık sinyalinin şimdiki zamana ulaşmayı başardığı olayların kümesine de geçmişteki ışık konisi denir.

Evrendeki tüm olayları üç sınıfa ayırabiliriz. Şimdiki zamanda bir O olayı olmuş olsun; ışık hızında veya ışık hızının altında bir hızla hareket eden etkiler yoluyla elde edilebilen olaylar, şimdiki zamanın geleceğinde yer alır. Şimdiki zaman sadece gelecekteki olayları etkileyebilir çünkü hiçbir şey ışıktan daha hızlı hareket edemez.

Benzer biçimde geçmişteki etkiler de ışık hızında veya ışık hızının altında hareket ederek şimdiki olaya ulaşması mümkün olan tüm olayların kümesi olarak tanımlanabilir. Şimdiki zamanın geleceği veya geçmişinde yer almayan olaylarsa, O noktasının dışında bir yerde yer alan olaylardır. Bu tür olaylarda olan biten şeyler, ne O’da olanları etkiler ne de O’da olanlardan etkilenir. Örneğin güneşin birden ortadan kalksaydı, bu şimdiki zamanda dünyada olanları etkilemezdi, çünkü güneşin ışığı veya kütleçekim etkisinin dünyaya erişmesi 8 dakika alır. Aslında evrene baktığımızda onu geçmişteki haliyle görüyoruz.

Buraya kadar anlattıklarımız Özel Görelilik kuramının konularıydı. Öte yandan 1915’te Einstein göreliliği kütleçekime de uygulayarak çok daha genel bir kuram elde etti: Genel Görelilik Kuramı. Einstein kütleçekimin diğer kuvvetler gibi bir kuvvet olmadığını, uzayzaman bükülmesinin sonucu olduğunu gösterdi. Gezegenlerin güneş etrafında dönmelerinin nedeni, uzayzamanın içerisindeki kütle ve enerjinin dağılımı nedeniyle bükülmüş olmasıdır. Bu olayı anlamak için jeodezik kavramını incelemeliyiz. Düz uzayda iki nokta arasındaki en kısa yol düz bir çizgidir. Ama kürenin yüzeyi gibi eğri bir uzayda jeodezik en kısa yoldur. Dünyanın yüzeyini düşünürsek, bir geminin okyanusta yol alırken izleyeceği en kısa yol (jeodezik) bir çemberdir (Şekil 2).

Resim Ekleme
Şekil 2

Aynı şekilde ışık da uzayzamanda en kısa yolu izler. Dolayısıyla bükülmüş uzayda ışık eğri bir çizgi izleyerek hareket eder. Işık kütleçekim alanları tarafından bükülür.

Einstein’ın bu öngörüsü 1919 yılındaki güneş tutulması sırasında Eddington tarafından sınanmış ve doğrulanmıştır (Şekil 3).

Resim Ekleme
Şekil 3

Genel görelilik kuramı ayrıca zamanın kütleçekime göre faklı aktığını da ortaya koyar. Tıpkı birbirine göre farklı hızlarda hareket eden sistemlerde zamanın farklı akması gibi, farklı kütleçekim etkilerine maruz kalan sistemlerde de zaman farklı akar. Örneğin zamanın dünya gibi kütleli bir cismin yakınında daha yavaş akar. Dünyaya uzak bir insan için, olayların gerçekleşmesi için yakındakinden daha uzun zaman gerekir. Kullandığımız konum ölçme sistemleri (GPS’ler), dünya yüzeyinden değişik yüksekliklerdeki saatlerin hızlarındaki farklılık, ve uydulardan gelen sinyaller temelinde işleyen çok hassas navigasyon sistemleriyle çalışmaktadır. Aksi takdirde hesap edilen konum birkaç kilometre yanlış çıkar.

Filmde bu nokta çok önem kazanıyor. Uzay yolculuğundaki mürettebat, çok büyük kütleli bir kara deliğin (Gargantua) yakınında bulunan bir gezegene iniş yaptıklarında, tıpkı uzay gemisiyle ışık hızına yakın bir hızda seyrediyorlarmış gibi zaman yavaşlamasına maruz kalıyorlar. Ancak filmin senaryosu gereği gereken dakikada 7 yıllık zaman farkını yaratmak için Kip Thorne Gargantua’yı neredeyse ışık hızında döndürmek zorunda kalıyor. Bu çok eğlenceli ayrıntıyı Yıldızlararasının Bilimi’nde okuyabilirsiniz.

Kuantum

1900-1930 yılları arası dünyayı algılayışımızı kökten değiştirecek üç kuram ortaya çıktı: özel görelilik (1905), genel görelilik (1915) ve kuantum mekaniği (1900-1926). Kuantum fiziği, cep telefonlarından DNA’ya her şeyin nasıl çalıştığını açıklayabilse de, gerçekte neden böyle olduğunun cevabını veremiyor. Buradaki temel gizem, bir elektronun iki delikten aynı anda geçmesi (diğer bir deyişle Schrödinger’in kedisi) paradoksu. Hangi delikten geçtiğine baktığınızda, elektronlar ekranda girişim deseni oluşturmaz,   belli bir duruma ‘çökerler’. Kopenhag yorumuna göre elektron gibi kuantum varlıklarının siz onlara bakmıyorken ne yaptıklarını sormak anlamsızdır. Bu yoruma göre, uzaydaki bir noktada, örneğin iki delikten birinde, gerçek gözlemden bağımsız olarak, elektronun nesnel varlığına verilebilecek herhangi bir anlam yoktur. Elektron sadece biz onu gözlemlediğimizde varlığa kavuşur gibi görünür (Şekil 4).

Resim Ekleme
Şekil 4: Basit bir çift yarık düzeneği. Eğer gözlemci hangi elektronun nereden geçtiğini gözlemezse girişim deseni oluşur (üstteki durum); ama hangi elektronun nereden geçtiğini gözlerse girişim deseni oluşmaz (alttaki durum).

Çevremizde gördüğümüz her şey, hava, su, ateş ve toprak bir metrenin on milyarda biri büyüklüğündeki atomlardan; atomlar kendilerinden on bin kat küçük çekirdek ile bir milyar kat küçük elektronlardan; çekirdek ise kendinden on kat daha küçük nötron ve protonlardan oluşmaktadır. Atom çekirdeğindeki proton ve nötronlar ise temel parçacık olan kuarklardan meydana gelmektedir. Böylesi küçük varlıkların (mikrokozmos) davranışlarının günlük hayatta (makrokozmos) gözlemlediğimiz cisimlerden farklı olduğunu varsayıyoruz. Çok küçük boyutlarda geçerli olan kuantum mekaniği yasalarına göre, atomaltı parçacıkların konumları ne kadar yüksek hassasiyetle ölçülürse, hızları o kadar az hassasiyetle bilinebilir (Heisenberg belirsizlik ilkesi); hem dalga hem parçacık özellikleri gösterirler; devinim sırasında belli bir yörünge izlemezler; verilen bir durumdan diğerine geçerken gözlenemeyen ara durumlar geçirirler. Özetle, mikrokozmosa uyguladığımız doğa yasalarıyla, makrokozmosu değerlendirirken ortaya attığımız doğa yasaları arasında ontolojik bir kopuş sözkonusu. Çünkü beynimiz makrokozmosta evrimleşti. Çevremizdeki olaylara tepki vermeye yönelik olarak evrimleşen zihnimiz, atom altı dünyasındaki günlük hayatta alışkın olmadığımız olguları yorumlamakta yetersiz kalıyor.

Evrenimiz aslında temelinde kuantize olmuş durumda. Evrendeki her şey (biz dahil) az ya da çok, rastgele dalgalanmakta. Küçük nesnelerdeki dalgalanmaları hassas aletlerle tespit edebiliyoruz. Ama büyük cisimlerde dalgalanma çok çok az olduğundan tespiti mümkün değil. Ancak sözkonusu kütleçekim olduğunda ve kara delik ya da Büyük patlama gibi tekillikler söz konusu olduğunda kuantum dalgalanmaları temel rol oynamakta.

Resim Ekleme
Şekil 5: Şekilde, farklı enerji seviyelerindeki atomlardaki elektron olasılıkları görülmekte.

Günlük hayatta yukarıda bahsettiğimiz etkileri gözlemleyemememizin nedeni, deneyimlediğimiz hızların ve kütleçekim alanlarının çok zayıf, boyutların ise çok büyük olmasıdır.

Karadelikler




Ama karadelikler için durum değişir. Kara deliklerde hem kütleçekim çok büyüktür ve karadelik tekilliklerinde kuantum mekaniğinin önemli etkileri olsa gerektir. Bu yüzden nasıl klasik fizik atomların sonsuz bir yoğunluk derecesinde çökmesi gerektiğini varsayarak kendi çöküşünü öngörüyorsa, klasik genel görelilik de karadeliklerdeki sonsuz yoğunlukta noktalar öngörerek bir anlamda kendi kendini çökertir. Bu nedenle fizikte yeni bir kurama, genel görelilikle kuantumu birleştiren bir kurama ihtiyaç vardır. Böyle bir kuramın sahip olması gereken bir dizi özelliği biliyoruz. Ama önce kara deliklerin özelliklerine göz atalım.

Aslında kara delik fikri genel görelilikten çok daha eskidir. İngiliz fizikçi John Michell 1783 yılında, yeterli ölçüde yoğun ve kütleli bir yıldızın ışığın kaçamayacağı yeğinlikte bir kütleçekim alanına sahip olacağını öngörmüştü.

Bugün bu tür cisimlere kara delik diyoruz, çünkü bu cisimlerden hiç bir şey kaçamaz. Şüphesiz o yıllarda ışığın kütleçekimden nasıl etkilendiğine dair bir fikir yoktu. Ama 1915'te Einstein'ın genel göreliliği ortaya koymasından bu yana kütleçekimin ışığı nasıl etkilediğine ilişkin tutarlı bir kuramımız var.

Bir kara deliğin nasıl oluştuğunu anlayabilmek için öncelikle bir yıldızın yaşam döngüsüne bakmamız gerekir. Bir yıldız, kütleçekim kuvveti nedeniyle çok büyük miktarda hidrojenin kendi üzerine doğru çökmeye başladığında biçimlenir ve atomlar birbirleriyle daha sık ve daha yüksek hızlarda çarpışmaya başlayarak yıldız ısınır. Sonunda öyle sıcak bir hale gelir ki, hidrojen atomları çarpıştıklarında artık birbirlerinden sekmez, bunun yerine helyumu oluşturacak şekilde kaynaşırlar. Füzyon adı verilen bu tepkimede serbest kalan ısı, yıldızın parlamasını sağlar. Bu ısı, gazın basıncını kütleçekim etkisini dengelemeye yeterli olana dek arttırır ve gazın büzüşmesi durur. Tıpkı bir balonu üfleyerek şişirmeye başladığımızda, balonu genişletmeye çalışan içerideki havanın basıncı ile balonu küçültmeye çalışan lastikteki gerilim arasındaki denge gibi, yıldız da bir süre sonra genişlemesini durdurur. Ancak en sonunda yıldız hidrojenini tüketir ve soğumaya, dolayısıyla da büzüşmeye başlar. Bir yıldızın kütlesi Chandrasekhar sınırından azsa, büzüşme durur ve beyaz cüceye dönüşür. Öte yandan Chandrasekhar sınırının üzerinde bir kütleye sahip olan yıldızlar, yakıtlarının sonuna geldiklerinde kara deliğe dönüşebilirler.

Güneş'in kütlesinin 5-10 katı kadar kütlesi olan bir yıldız düşünün. Birkaç milyar yıllık yaşam süresi boyunca hidrojeni helyuma dönüştüren yıldızın merkezinde üretile ısı yıldızı kendi kütleçekimine karşı desteklemeye yeterli basınç yaratacaktır. Ancak yıldız nükleer yakıtını bitirdiğinde, dışa doğru basıncı koruyacak hiçbir şey olmayacak ve yıldız kendi kütleçekimi nedeniyle çökmeye başlayacak, büzüldükçe yüzeydeki kütleçekim alanı güçlenecek ve kaçıp kurtulma hızı artacaktır. Yıldızın yarıçapı otuz kilometrenin altına inene kadar kaçıp kurtulma hızı saniyede 300.000 kilometreye, ışığın hızına kadar artmış olacaktır ve sonra yıldızdan yayılan herhangi bir ışık sonsuzluğa kaçamayacak, kütleçekim alanı tarafından çekilecektir. Böylelikle yıldız kara deliğe dönüşmüş olur. Kara deliğin sınırına olay ufku denir ki, yaklaşık on Güneş kütlesi kadar kütlesi olan bir yıldız için bu sınır yaklaşık otuz kilometredir (Şekil 6).

Resim Ekleme
Şekil 6

Roger Penrose ve Stephen Hawking'in çalışmaları, genel görelilik uyarınca bir kara deliğin içerisinde sonsuz bir yoğunluğa ve uzayzaman bükülmesine sahip bir tekilliğin olmak zorunda olduğunu gösterdi. Bu Büyük Patlamadaki duruma benzer tekillikte bilimsel yasaların ve bizim geleceği öngörme becerimiz geçersizleşir. Ancak kara deliğin dışında kalan bir gözlemciye tekillikten ne ışık ne de başka bir sinyal ulaşabildiğinden bu durumdan etkilenmez. Kara deliğin dışında kalan gözlemciler tekillikte oluşan öngörülebilirlik kırılmasının sonuçlarından korunmaktadırlar. Olay ufku, kara deliği çevrelemiş tek yönlü bir filtre gibidir. Cisimler, olay ufkundan geçerek kara deliğe düşebilir, ama hiçbir şey kara delikten çıkıp olay ufkundan geçerek dışarı çıkamaz.

Kara delikler doğrudan gözlemlenemezler ama çevresindeki yıldızları içine çekerken oluşturdukları görüntüler saptanabilir. Kütleçekimsel mercek etkisi adı verilen bu durum da filmde isabetli bir şekilde veriliyor. Einstein'ın Görelilik kuramının ortaya koyduğu kara delik yapısının, gerçeğe en yakın gösterimi bu filmde yapılmış. Hatta bu film için hazırlanan görseller yeni bir bilimsel keşfe bile yol açmış.

sirius  |  Cvp:
Cevap: 1
27.01.2016- 23:07

II) Filmde Yer Alan, Kanıtlanmamış Bilimsel Spekülasyonlar

Sicim Kuramları ve Zaman Yolculuğu

İşte filmin ana teması da aslında kara deliğin içinde neler olup bittiğini bilmememize dayanmakta. Kara deliklere ilişkin alternatif fizik modelleri vardır. Bu modellerden bazıları kuantum kuramıyla kütleçekimi birleştiren kuantum kütleçekim kuramlarıdır ki, en popülerleri arasında sicim kuramları yer alır.

Sicim kuramına göre madde, titreşen sicim benzeri nesnelerden ve uzay da ekstra gizli boyutlardan oluşur; bilinen her parçacık aslında salınan küçük bir sicimdir ve sicimler farklı şekillerde salınarak farklı parçacıkları meydana getirirler. Ufak sicimlerin yanı sıra kozmik sicimlere benzeyen çok büyük sicimlerin de olması olasıdır. Bu kuram doğada gözlenen sayısız temel parçacığı tek bir nicelikle, sicimle açıklayabildiği için güzel bir kuramdır. Sicimler kesin, kuantize olmuş hareketlere sahip olarak titreşir ve dönerler; böylece her yeni kuantize durum kütle, yük ve spin gibi bir dizi fiziksel özellik ortaya çıkartır. Fotonları ya da gravitonları tanımlayan sicimlerin ufak parçaları yaklaşık olarak bir protonun çapının bir trilyonda birinden daha küçüktür ve o nedenle de günümüz teknolojileriyle saptanamazlar. Sicim kuramı kütleçekimi de açıklayabildiği için çok başarılı bir kuramdır ama henüz spekülasyon düzeyindedir, kanıtlanamamıştır. Yine de sicim kuramı, sonsuzlukları barındırmayan bir kuantum kütleçekim kuramını otomatik olarak kapsar. Sicimin iki parçası çarpıştığında, birleştiğinde ve parçalara ayrıldığında meydana gelen olayların hesapları sonlu değerler verir. Hiçbir tekillik ya da sonsuzluk yoktur.

Başlangıcı 1968'e dayanan sicim kuramının modern versiyonu Edward Witten'ın fikirlerine dayanır ve bu bize yeni bir kuantum kütleçekim kuramı sunar. Sicim kuramının bu versiyonunda sıradan üç boyutlu evren, deneyimlenemeyecek dördüncü bir boyut boyunca uzanan ince bir boşluk sayesinde birbirlerinden ayrılır. Atomlar ve ışık, içinde yaşadığımız uzayın yüksekliği, genişliği ve derinliği boyunca hareket edebilir ama ekstra boyutta hareket etmeleri sicim kuramı yasalarınca yasaklanmıştır. Diğer evren de ekstra boyutta hareketleri yasaklanmış kendine has madde ve ışığa sahiptir ve bu iki evren birbirleriyle kütleçekim sayesinde etkileşebilirler. İşte filmde de Cooper'ın geçmişiyle haberleşebilmesi bu sayede gerçekleşir.

Modern sicim kuramlarında (ya da M-kuramlarında) uzayzamanın alışıldık dört boyut yerine, on bir boyuta ihtiyaç vardır. Böylece ek uzayzaman boyutlarının varlığı bize bilimkurgusal bir malzeme sunar ve bu sayede genel göreliliğin normal sınırlaması olan ışıktan hızlı ve zamanda geriye doğru seyahat edilememesinin üstesinden gelinir. Zaman yolculuğunun ana fikri, bu fazladan boyutlardan geçen bir kestirme yoldan gitmektir. Bu durumu şöyle kafamızda canlandırabiliriz. İçerisinde yaşadığımız uzayın sadece iki boyutlu ve simit (torus) yüzeyi gibi olduğunu düşünün (Şekil 7). Simitin iç tarafındaysanız ve diğer taraftaki bir noktaya gitmek istiyorsanız, simitin iç kısmını dolaşarak gitmeniz gerekir. Oysa üçüncü boyutta yolculuk edebiliyor olsanız, doğrudan karşıya geçerdiniz.

Resim Ekleme
Şekil 7

Yıldızlararası filminin bilim danışmanı Kip Thorne'un bilimkurguya kazandırdığı solucan deliği fikri de buna benzer. 1984'te Carl Sagan'a Mesaj romanı için verdiği solucan deliği fikri o günden bu yana bilimkurgunun vazgeçilmez unsuru haline gelmiştir. Gerek diğer bilimkurgu romanlarında ve filmlerinde gerekse Yıldızlararası'nda ışıktan hızlı seyahat için solucan deliği kullanılır. Bir solucan deliği, yukarıdaki simit örneğinde olduğu gibi, uzayzaman düzleminin bir noktasını tamamen ayrı bir bölgedeki bir diğer noktasına doğrudan bağlayan geçittir. Basitçe bir kağıdı elinize alıp, iki kenarını birbirine değecek şekilde katladığınızda, birbirine değen uçlar arasında seyahat edebilmeniz şeklinde görselleştirilebilir (Şekil 8). Şekilde görüldüğü gibi, normal de 25 ışık yılı mesafedeki Vega'ya gitmemiz için bir solucan deliği kullanırsak neredeyse Vega'ya anında ulaşırız.

Resim Ekleme
Şekil 8

Elbette, bizi böyle bir yolculuğa çıkartabilecek bir makine inşa etmek oldukça zordur ve bunu sağlayacak teknoloji bugün var olan her şeyden çok daha farklı olacaktır.

Witten'ın M-teorisi titreşen sicimler yerine, titreşen zarları koyar. Bir nokta bir 0-zar'dır, bir çizgi (veya sicim) bir 1-zar'dır, bir tabaka bir 2-zar'dır, ve görsellemesi zor olsa da, daha yüksek boyutlarda özdeş yapılar bulunmaktadır: 3-zar, 4-zar, vs. İşte bu kuram evrenin başlangıcı sorununa da bir açıklama getirir. Ovrut, Steinhardt ve Turok bu kuramı evrenin başlangıç soruna bir çözüm olarak kullandılar ve Büyük Patlamanın birbirine çarpan zar evrenler ile başlamış olabileceğini önerdiler. Buna göre, sonsuz sayıda evren-zarlar birbirleriyle çarpıştıklarında (Şekil 9) bizim Büyük Patlama dediğimiz şey gerçekleşir ve içinde yaşadığımız evren genişlemeye başlar. Öte yandan başka yerlerde, başka boyutlarda da sonsuz sayıda Büyük Patlamalar gerçekleşmekte ve sonsuz sayıda başka evrenler de ortaya çıkmakta.

Resim Ekleme
Şekil 9

Bütün bu bilgilerin ışığında filmin en zor anlaşılan kısmına gelebiliriz. Kara deliğin içinde ne var? Nasıl oluyor da filmin kahramanı başka bir boyuta (ve zamana) geçebiliyor ve bizim yaşadığımız boyutu (ve zamanı) etkileyebiliyor? Şüphesiz işin bu kısmı spekülatif bilime giriyor. Ancak bunun bilimsel bir spekülasyon olduğunu ve her ne kadar kanıtlanmasa da diğer bütün kanıtlanmış bilimsel kuramlarla uyum içinde olduğunu hatırlatalım. Uzayzamanın bükülebildiğini yukardaki paragraflarda anlatmıştık. Bu konuda kimsenin bir şüphesi yok. Ancak bu bükülme iki şekilde gerçekleşebilir. 1-) İçinde yaşadığımız 4-boyutlu uzayzamandan başka bir boyut yok ve bükülme uzayzamanın kendisinin bükülmesidir. Büyük Patlamadan bu yana genişleyen evren de, bütün uzayzamanın genişlemesi şeklinde gerçekleşiyor. Tıpkı bir balon gibi ama balondan başka bir şey yok. Klasik cevap bu ve bu cevap yakın zamana kadar bütün fizikçilerin ortak görüşüydü. 2-) Ancak bir açıklama daha var ki, özellikle 1980'lerden sonra kuantum kütleçekim kuramlarının çeşitlenmesiyle birlikte, sicim kuramları, M-kuramı gibi popüler kuramlar tarafından benimsenmekte. O da şu: içinde yaşadığımız uzayzaman, yığın [bulk] adı verilen bir beşinci boyut (diğer tüm boyutları 5. boyut gibi düşünelim) içinde bükülmekte. Dolayısıyla bu açıklamaya göre, "evrenimiz neyin içinde genişliyor?" sorusuna verilecek yanıt:, "yığının içinde ya da 5. boyutun içinde genişliyor" olacaktır. Bu yeni kuramlara göre bizim içinde yaşadığımız evren bu yığının için de bir zardır [brane] (Şekil 10).

Resim Ekleme
Şekil 10: 4-boyutlu uzayzamanımızı 2-boyutta canlandırmaya çalışırsak elde edeceğimiz resim şekildeki gibi bir zar [brane] olacaktır. Yığın [bulk] ise buna dik bir 5. boyuttur. Şekildeki "dışarı-içeri" ["out-back yazmış

yönü, zardan yığına olan yöndür.

Ayrıca bu kuramlara göre, kütleçekimi hariç diğer bütün kuvvetler (elektromanyetizma, zayıf ve yeğin nükleer kuvvetler) bizim zarımız içine hapsolmuş durumdalar. Sadece kütleçekim boyutlararası geçiş yapabilmekte.

Yıldızlararası filmi, yığının [bulk] var olduğu varsayımına göre kurgulanmış. Öte yandan eğer yığın varsa o zaman kurama göre mutlaka "bükülmüş" olmalıdır. Teknik olarak söylersek, eğer yığın (5. boyut) bükülmüş olmasaydı, kütleçekim ters kare yasasına değil ters-küp yasasına göre davranırdı. Diğer bir ifadeyle, güneşle gezegenler arasındaki kütleçekim kuvveti mesafenin küpüyle ters orantılı olurdu ve bu durumda gezegenler güneşin etrafında dolanmak yerine uzaya dağılıp giderlerdi.

Şimdi 2-boyutta gösterdiğimiz 4 uzayzaman boyutlu zarımızdaki boyutları 1-boyuta indirelim (Kuzey-Güney) ve ortadaki kalın çizgiyle ifade edelim (Şekil 11).

Resim Ekleme

Şekil 11'in ortasındaki mavi diskte küçük bir parçacığın kütleçekim alanı betimlenmekte. Kırmızı çizgiler kuvvet çizgilerinin "dışarı-içeri" [out-back] yönünde yığına sızmasını gösteriyor. Mavi diskin içinden yayılan kütleçekim kuvvet çizgileri, diskin dışına çıktıklarında Kuzey-Güney [North-south] yönüne paralel olurlar ve "dışarı-içeri" yününe gitmezler. Böylelikle Newton'ın ters kare yasası da tekrar sağlanmış olur.

Kuantum kütleçekimi anlamaya çalışan fizikçiler, ekstra boyutların mikroskobik boyutlarda olduklarını ve kendi üzerlerine katlandıklarını düşünürler. Bu da kütleçekimin çok hızlı yayılmasını engeller. Ancak Yıldızlararası filminde bir spekülatif adım daha atılmış ve bu boyutlardan en az birinin kendi üzerine katlanmadığı varsayılmış. Bunun nedeni de filmin kahramanına yer açmak. Cooper filmin sonunda teserakt adı verilen 4-boyutlu bir küpün içine düşüyor.

1999 yılında Lisa Randall ve Raman Sundrum kütleçekimin yığının içine yayılmasını önleyen bir yol buldular. Randall'ın Warped Passage [Bükülmüş Geçitler] kitabında (Alfa Bilim dizisinden basıma hazırlanmakta) anlatılan teknik detaylara değinmeden, buna Anti-deSitter bükülmesi adı verildiğini söyleyelim. Özetle belirtirsek, Anti-deSitter bükülmesi kuantum dalgalanmalarından kaynaklanmakta.

Şimdi, mikroskopik bir tesearkta yaşayan iki mikrobu gözümüzde canlandıralım. Bunlar birbirlerinden 1 km mesafede olsunlar ve dik açılarla kendi zarları terk edip yığının [5. boyut] içine girsinler (Şekil 12).

Resim Ekleme
Şekil 12

Bu mikroplar 1 mm yol aldıklarında, Anti-deSitter (AdS) bükülmesi nedeniyle aralarındaki mesafe 10 kat küçülür, 100 m'ye iner ve yol almaya devam ettiklerinde aralarında mesafe de küçülür. Bu küçülme nedeniyle de, zarımızın dışındaki 5. boyutta kütleçekimin yayılacağı fazla bir yer kalmaz.

Bu nedenle, aslında Cooper'ın teserakta gezinebileceği pek yer yoktur. Ama Kip Thorne bu problemi kendi zarımızı AdS bükülmesinin içinde bir sandviç gibi tasarlayarak çözer. Sandviçin içinde ortadaki bizimki olmak üzere üç zar vardır ve sandviçin dışında yığın bükülmüş değildir. Dolayısıyla sandviçin dışında her türlü bilimkurgusal senaryoya izin verecek bir alan kalır. Sandviçin kalınlığının 3 santimetre olması bütün gözlemlenir evreni kapsaması için yeterlidir!

Resim Ekleme
Şekil 13

Cooper'ın içinde gezindiği 4 boyutlu küp [teserakt] hakkındaki teknik detayları Kip Thorne'un kitabında okuyabilirsiniz. Burada kütleçekim dalgalanmaları önemli bir yer tutmakta. Filmde de kütleçekim anomalileri olarak karşımıza çıkıyorlar.

Aslında kütleçekim anomalileri çok eski bir kavram. Newton kuramına uymayan Merkür'deki anomali Einstein kuramıyla halledilmişti. Daha modern bir anomali kara madde kavramını kattı bilim dünyasına. Henüz kara maddenin ne olduğu çözülebilmiş değil. 1998'de çok daha çığır açıcı bir anomali evrenin hızlanarak genişlediğini göstererek kara enerji ismini aldı. Kara enerjinin de ne olduğunu bilmiyoruz. Filmdeki anomalilerse zaten varlığını bildiğimiz gelgitsel kütleçekimdeki açıklanamayan farklılıklar. NASA'daki profesör bunlara 5. boyuttakilerin yol açtığından şüpheleniyor. 5. boyuttaki yığın alanının böylesine gelgitsel kütleçekim anomalilerine yol açması mümkün.

sirius  |  Cvp:
Cevap: 2
27.01.2016- 23:12

Tekillik

Kuantum dalgalanmalarını bir kenara bırakırsak, Einstein'ın çok iyi anlaşılmış görelilik yasalarını elde ederiz. Bu yasalar uzayzamanın örneğin bir kara delik etrafında nasıl büküldüğünü betimler. Ancak kuantum dalgalanmalarını işin içine katmadan doğru bir kuantum kütleçekim kuramı elde etmek de mümkün değildir. Çünkü Einstein yasaları Büyük Patlamanın başlangıcı ya da kara deliğin içi gibi yerlerde çalışmaz. Tekillik, uzayın ve zamanın bükülmesinin sınırsız olduğu yerdir.

Resim Ekleme
Şekil 14: Kuantum Köpüğü

Tekillik, Einstein yasalarıyla kuantum kuramının birleştiği yerdir. İşte o nedenle kara deliğin içinde neler olup bittiğini anlamak, kuantum kütleçekim kuramını kurtaracak olan bir bilgidir. Filmde de bu bilgiye erişmek için kahramanlarımız kara deliğin içine dalmaktalar.

1990'lardan bu yana fizikçiler kara delikler hakkında daha çok şey bildiklerini düşünüyorlar. Her ne kadar bu kuramlar doğrudan deneylerle veya gözlemlerle kanıtlanmamış olsa da, diğer kuramlar ve gözlemlerle uyum içindeler. Eskiden sadece BKL tipi tekillikler bilinirdi. Belinsky, Khalatnikov, ve Lifshitz isimli Rus fizikçilerin adını verdiği BKL tipi tekillikler yüksek düzeyde kaotiktir. Böyle bir kara deliğin içine girmeniz tavsiye edilmez. Eğer kazara böyle bir kara deliğin içine düşerseniz atomlarınıza ayrılırsınız. Rus fizikçiler kara deliğe düşen birinin kaderini öngörebiliyorlar ancak tek bir konuyu bilemiyorlar: atomların kaderi. Ne onlar ne de başka hiç kimse günümüzde kara deliğe düşüp de parçalanan bir cismin atomlarının ne olacağını öngöremiyor.

Resim Ekleme
Şekil 15

1991 yılında Eric Poisson ve Werner Israel, Einstein denklemleri üzerine çalışırken ikinci tipte bir tekillik keşfettiler. Bu tekillik kara delik yaşlandıkça büyüyordu. Nedeniyse, kara deliğin içinde zamanın olağanüstü yaşlanmasıydı. Eğer Gargantua gibi kara deliğin içine düşerseniz, sizinle birlikte gaz, toz, ışık vb gibi birçok başka şey de girer. Bütün bunların kara deliğe girmesi, dışarıdan bakan bir gözlemci için milyarlarca yıl alır. Ama kara deliğin içindeki biri için bir saniyeden kısa bir süredir bu. Dolayısıyla böyle bir kara deliğin içine girerseniz, bütün bu maddelerin ışık hızına yakın bir hızla, ince bir tabaka halinde üzerinize doğru düştüğünü görürsünüz. Bu tabaka uzayzamanı bozan yoğun gelgitsel kütleçekim kuvvetleri yaratır. Gelgit kuvvetleri sonsuza kadar büyürken tekillik oluştururlar. Sonuçta "içeri doğru tekillik" meydana gelir (Şekil 16).

Resim Ekleme
Şekil 16

Gelgit kuvvetleri bir yandan çekip bir yandan sıkıştırdığından, tekilliğe ulaştığınızda net kuvvet sonsuz değil sonlu olur ve hayatta kalma şansınız olabilir (Şekil 17).

Resim Ekleme
Şekil 17

2012'de Donald Marolf ve Amos Ori üçüncü tipte bir tekillik keşfettiler. Sizden önce kara deliğe düzen gaz, toz, ışık, kütleçekim dalgaları vb gibi şeylerin yarattığı "dışarı doğru tekillik" adı verilen bu tekillik de kara delik yaşlandıkça büyür. Bunların küçük bir bölümü kara deliğin içindeki uzay ve zaman bükülmeleri sonucu size doğru yansır. Bu yansıma, zaman yavaşlaması yüzünden bir şok cephesi gibi sıkıştırılmıştır Yine gelgit kuvvetleri oluşturur ve sonsuzluğa doğru büyüyerek tekillik oluştururlar. Ama bu defa söz konusu olan "dışarı doğru tekillik"tir. Bu tür bir tekillik içinde de sağ kalma şansınız vardır (Şekil 18).

Resim Ekleme
Şekil 18

Sonuç olarak, filmin kahramanı yarattığı "dışarı doğru tekillik" tipindeki bir tekillik içine düşerek dört boyutlu küp olan teserakta girer ve kütleçekim anomalileri yaratarak geçmişe haber gönderir. Bütün bunlar fantezi değil, şu anki bilimsel bilgilerimizle olası senaryolar. Ama şüphesiz kanıtlanmış bilgiler değil bunlar.

Filmden zevk almanız dileğiyle.

Yazan: Doç. Dr. Kerem Cankoçak (İTÜ Fizik Mühendisliği)




sirius  |  Cvp:
Cevap: 3
27.01.2016- 23:14

Filmi iki kere izledim, çok beğendim. anlamadığım bölümler vardı, bu açıklamaları da tam anlayamadım ama, filmi tekrar izleyeceğim.

Tam Sürüme Geç »
 phpKF Mobil Android Uygulaması Kullanın [X]