Her şeyin teorisi mi?
Sercan Ulucak
Tüm evreni açıklayacak nihai bir teori bulmak modern fiziğin en temel arayışı oldu. Albert Einstein başta olmak üzere birçok bilim insanı evren hakkında her şeyi anlamaya çalıştı. Acaba mükemmel bir "her şeyin teorisi" mümkün mü? Yoksa her şey çok daha büyük bir gize mi dönüşüyor?
Modern fizik şu an için iki teorik çerçeveye dayanıyor: genel görelilik teorisi ve kuantum mekaniği. İlki kütle çekimi kuvvetini baz alarak yıldızların, galaksilerin ve galaksi kümelerinin gözlemleyebildiğimiz büyük ölçekli evrenini, öbürü yerçekimsel olmayan kuvvetler üzerinde yoğunlaşarak atomaltı parçacıkların, atomların ve moleküllerin küçük ölçekli evrenini açıklıyor. Genel görelilik ve kuantum mekaniğinin kara delikler söz konusu olduğunda birbiriyle nasıl çatıştığını biliyoruz. Fizikçiler henüz bu iki teoriyi içine alacak tek, kapsayıcı bir teori geliştiremedi. Her şeyin teorisinden anlaşılması gereken de tam olarak bu: bir kuantum kütle çekim kuramı bulmak.
Stephen Hawking, Zamanın Kısa Tarihinde her şeyin teorisinin bilim için kaçınılmaz olacağına işaret ediyor: Artık evrenin gelişigüzel olmadığına ve ona belli yasaların hükmettiğine inanıyorsanız, bu eninde sonunda kısmi kuramları birleştirerek evrendeki her şeyi açıklayacak tam birleşik bir kurama ulaşmak durumda kalacağımız anlamına gelir.
Newton evrenin ilk kapsamlı matematiksel modelinin sahibidir. Portre: Sir Godfrey Kneller
17. yüzyılın sonuna doğru fizikçiler her şeyin bilgisine ulaştıklarını düşündü. Bu heyecanın sebebi genç bir İngilizdi. Evrenin ilk kapsamlı matematiksel modelinin sahibi Isaac Newton cisimlerin hareketini ve kütle çekiminin işleyişini açıklamıştı. Kütle çekimi kuvveti yalnızca yeryüzüyle sınırlı değildi. Dünyadaki cisimler kadar Güneşin etrafında dönen gezegenler de aynı yasaya bağlıydı. İlk kez küçükten büyüğe her şeyi yöneten bir kuram bulunmuştu. Sonradan anlaşıldı ki Newtonın kütle çekimi kanunu bir kanun olamayacak kadar evrensellikten uzaktı.
Burada akıldan çıkmaması gereken o günün her şey algısıyla bugünün her şey algısının aynı olmadığı gerçeği. Her şeyi kavradığımızı zannettikçe açıklanmayı bekleyen yeni ve daha karmaşık sorular ortaya çıkıyordu...
Neredeyse iki asır sonra her şey daha anlaşılırdı. Albert Einstein genel görelilik kuramını ortaya atmıştı. Kütle çekimi üzerine daha derin bir kavrayış.
İki ayrı şey olarak görülen uzay ve zaman esasında birbiriyle yakından ilişkiliydi. Uzay uzunluk, genişlik ve yükseklik olmak üzere üç boyuttan oluşuyordu. Zamansa dördüncü bir boyuttu. Uzay-zaman sürekliliğinden bahsedilebilirdi artık.
Einstein kütle çekimini uzay-zamanın bükülmesiyle açıklar. Kaynak: NASA.
Einsteinın fiziği aşıp entelektüel hayatımızı şekillendiren düşüncesine göre uzay-zaman sabit ve değişmez değildi. Ağır cisimler uzay-zamanı eğip büküyordu. Kütle çekimi cisimleri birbirine bu yüzden çekiyordu.
Devrim niteliğinde olmasına rağmen genel görelilik her şeyin teorisi değildi. Einsteinın kuramı yalnızca xx-large bedenlere göreydi. Atomaltı dünyasının sakinleri çok fitti ve xx-small giyiyordu.
Kuantum mekaniği ile genel göreliliği uzlaştırma gereksinimi nereden doğuyor peki? Evrendeki tüm maddenin çok çok küçük bir hacme sıkıştığını düşünelim; modern kozmoloji, evrenin geçmişinde böyle bir dönem olduğunu söylüyor. O kadar küçük ki, kuantum mekaniğinin geçerli olmasını beklediğimiz bir durum; ama o kadar yoğun ki, kütleçekimi çok fazla ve genel görelilik de geçerli olmalı. Ancak bazı fizikçilere göre daha fazlası olabilir.
Kuantum mekaniği maddeyi oluşturan atomaltı parçacıkları inceler. Kaynak: agsandrew | Shutterstock
Hawking bunu şöyle açıklamaktadır: Genel görelilik kendisi dahil olmak üzere, tüm fiziksel kuramların evrenin başlangıcında geçersizleşeceğini öngördüğü için bize evrenin nasıl başladığını söyleyemez. Genel görelilik sadece kısmi bir kuram olarak geçerlidir, dolayısıyla tekillik teoremlerinin bizlere aslında gösterdiği, çok erken evrende kuantum mekaniğinin küçük ölçekli etkilerinin göz ardı edilemeyeceği bir zamanın yaşanmış olması zorunluluğudur. Böylece 1970lerin başlarından itibaren bizler evrenin anlaşılması arayışında yönümüzü olağanüstü büyük şeylerin kuramından olağanüstü küçük şeylerin kuramına çevirmek zorunda kaldık.
Atom gibi küçük şeyler incelendiğinde maddenin oldukça tuhaf davrandığı gözlemlenmekteydi.
Başta atomların maddenin en küçük yapıtaşı olduğu kabul görüyordu. 19.yüzyılın sonlarına doğru bilim insanları atomlardan 2000 kat daha hafif parçacıklar buldu: elektronlar. İlk defa bir atomaltı parçacık keşfedilmişti. Sonraki yıllarda elektronların etrafında dans ettiği nötron ve protonlardan oluşan atomun en ağır kısmı atom çekirdeği aydınlatıldı. Atom bölündükçe bölünüyordu. 1960lara gelindiğinde fizikçiler düzinelerce temel parçacık bulmuştu. Nötron ve protonlar da kuark denilen temel parçacıklardan oluşuyordu.
Atomaltı parçacıklarının gezegenlerin tabi olduğundan tamamıyla farklı fizik yasalarıyla yönetildiği anlaşılmıştı.
Atomlar atomaltı parçacıklardan oluşur./ Kaynak: wisegeek
Kuantum mekaniğine göre, parçacıkların konumları ile hızlarını aynı anda kesin olarak bilmek mümkün değildi; bu nedenle, klasik fiziktekinin aksine, bir parçacığın herhangi bir andaki fiziksel durumunun tüm bilgisine kesinlikle sahip olabileceğimizi -prensipte de olsa- varsayamazdık.
Atomaltı dünyasının keşfiyle her şey her şey olmaktan çıkmıştı. Bilim insanları her şeyden bahsederken bir kez daha düşünecekti artık. Görülen o, parçaları bulmak puzzleı çözmüyordu. Onu büyütüyor, çok daha başa çıkılmaz yapıyordu.
Evreni kısmi olarak tasvir eden iki teori genel görelilik ve kuantum mekaniği defalarca kanıtlandı. Doğrulukları şüphe götürmüyor. Fakat kara delikler işleri çok fena halde kızıştırıyor. Evrenin dipsizlik ve tutarsızlıkla fokurdayan kazanları. İki teori orada adeta çuvallıyor. Çünkü kara delikler varken ikisinin birden doğru olması imkansız. Sorun şurada: kara delikler genel göreliliğin uygulanacağı büyüklükte olduğu kadar, kuantum mekaniğinin uygulanacağı küçüklükte de. Fizikçileri her şeyin teorisi arayışına sürükleyen de işte bu çileden çıkartan uyuşmazlık.
Her şeyin teorisine kafa yoranlardan biri Albert Einsteindı. Kuantum mekaniğiyle arası hiç de iyi olmayan Einstein kütle çekimi ile fiziğin geri kalanını bir araya getirecek teorinin peşinden koştu. Kuantuma pabuç bırakmamakta kararlıydı.
Genel görelilik yıldızlar gibi büyük ölçekli cisimlerin teorisidir. Kaynak: NASA.
30 sene boyunca kütle çekimiyle elektromanyetizm arasında çöpçatanlık yaptı. Cisimlerin birbirleri üzerinde uyguladığı iki kuvvet vardı: kütle çekimiyle birbirlerini çekiyor, elektromanyetizmayla birbirlerini hem çekiyor hem de itiyorlardı. Einsteinın amacı iki kuvveti bir birleşik alan teorisinde bir araya getirmekti. Ona göre elektromanyetizmayla kütle çekimi tek bir temel alanın iki farklı yanıydı. O yüzden uzay-zamana beşinci bir boyut ekledi. Beşinci boyut o kadar küçük ve bükülüydü ki gözlemlemenin imkanı yoktu.
Einsteinın birleşik alan teorisi meyve veremedi belki ama 20.yüzyılın ikinci yarısının başında her şeyin teorisi olmaya güçlü bir aday ortaya çıktı. Sicim kuramı denilen teoriye göre elektronlar gibi temel bileşenler aslında sıfır boyutlu nokta parçacıklar değillerdi. Tek boyutlu küçük halkalar veya sicimlere benziyorlardı.
Bu sicimler gerilime maruz kalırlar ve farklı frekanslarda titrerler. Titreşimler de her sicimin ne tür bir parçacık olacağını belirler. Elektron mu, nötron mu yoksa herhangi bir parçacık mı? Anlaşılacağı gibi tüm parçacıklar aynı tür sicimlerdir, farklılık yaratansa titreşimler.
Her şeyin teorisiyle nasıl bir bağı var bütün bunların? Sicim kuramı nihayetinde doğadaki kuvvetleri (kütle çekimi, elektromanyetizma, güçlü ve zayıf nükleer kuvvetler) bünyesinde barındırabiliyordu. Bu dört kuvvet çok daha anlamlı bir hale gelmişti. Sicim kuramcılarına göre her bir kuvvet erken evrende birbiriyle etkileşime giren sicimlerle açıklanabilirdi.
Sicim kuramı genel görelilik ile kuantum mekaniğini ortak bir alanda buluşturmuştur. Kaynak: Equinox Graphics
Güçlü ve zayıf kuvvetle elektromanyetizma kuantum mekaniğinin kapsamına giriyordu. Peki kütle çekimi kuantum mekaniğinin neresindeydi? Bazı fizikçiler yanıtın graviton ismini verdikleri parçacıkta yattığını ortaya attı. Gravitonlar kütlesizdi, belirli bir şekilde dönüyor ve ışık hızında hareket ediyordu. Gözlemlenmesi olanaksız olan ve etkilerine bakılarak varlığı bilinen bu parçacıklar kütle çekimini iletiyordu. Genel göreliliğin konusu olan kütle çekimi parçacık fiziğiyle de açıklanabilmekteydi artık. Bilim tarihinde ilk defa genel görelilik ve kuantum mekaniği ortak bir alanda buluşmuştu.
Her ne kadar fizik camiasında heyecan uyandırdıysa da sicim kuramı birçok tuhaf ve anlaşılmaz öngörülerde bulunuyordu. Bunlardan biri evrende çok sayıda boyutun olduğunu ileri sürmesiydi. Kuramın en gelişmiş versiyonlarına (superstring kuramları) bakılırsa evren 10 boyutluydu. Yani bilinen 4 boyutun haricinde aşırı derecede küçük gözlemlenemeyen 6 boyut daha vardı. Kuram ucu açık varsayımlara mahkum olmaktan kurtulamazdı.
Bu ve bunun gibi problemler bazı fizikçileri sicim kuramından uzaklaştırdı ve onları döngü kuantum yerçekimini (loop quantum gravity) çalışmaya itti. Döngü kuantum yerçekimi sicim kuramının aksine kütle çekimiyle diğer kuvvetleri birleştirerek tüm parçacık fiziğini içine alacak bir teori olma niyetinde değil. Amacı kuantum kütle çekim kuramını bulmak. Sicim kuramından daha sınırlı olması bakımından oldukça işlevsel.
Döngü kuantum yerçekimine göre uzay-zaman kırık parçalara bölünmüştür. Bu teori kütle çekimini nicelemeye çalışmaktadır. Teorideki kuantum durumları uzay-zamanın içinde olmaktan ziyade bilakis uzay-zamanı belirlemektedir.
Sicim kuramı gibi döngü kuantum yerçekimi de sıkı deneysel delillere sahip değil. Bu teorilerle yaptığımız parçaların çoğu kayıpken büyük resmi görmeye çalışmak.
M-teorisine göre her biri kendi fizik yasalarıyla yönetilen çok sayıda evren vardır. Kaynak: SPL
Her şeye karşın sicim kuramı ümit verici. Elektromanyetizma ve diğer kuvvetleri açıklayan teoriler vardı fakat kütle çekimi hep belirsiz kalmıştı. Şimdiyse sicim kuramıyla bütün bu kuvvetler bir araya geldi.
Esas sorun her şeyin sınırlarını kestirmenin ve onu tarif etmenin olanaksız olması. Her şey nerede başlar? Ve nerede biter? Yoksa başı sonu olmayan bir heyuladan mı ibaret her şey?
Her şeyin teorisi olmaya en yakın ve son aday 1995te ortaya atılan M-kuramıdır. Sicim kuramının daha derin bir versiyonu olan teori 10 değil 11 boyutlu bir evren modeli sunmaktadır. Bu kurama göre evrenimiz çok sayıda boyuttan oluşan uzay-zaman içinde 3 boyutlu bir zardan başka bir şey değildir. Uzay-zamanda buna benzer sayısız evren bulunuyor olabilir. Bu evrenler koleksiyonuna multiverse çoklu evren denilmektedir.
İlgili haber:
Silver, Katie. "Will We Ever Have a Theory of Everything?" BBC Earth. 2015. http://www.bbc.com/earth/story/20150409-can-science-ever-explain-everything.
http://bilimsol.org/bilimsol/fizik/her-seyin-teorisi-mi
Her şeyin teorisi üzerine Einştein ömrünün 30 yılını verdi ve bir sonuç alamadı. Hawking Kuantum ile genel göreliliği birleştirme konusuna çok kafa yordu, yoruyor, hala bir sonuç çıkmadı. Varsa, her şeyin teorisi'' ile karadeliklerin iç işleyişi ve big-bang'in mekanizmasının ortaya çıkarılacağı umud ediliyor.
Hawking big-bang için ''yokluk''tan veya ''hiçlik''ten ortaya çıktığını savunuyordu. ( Şimdi hala aynı yerde mi duruyor, bilmiyorum.) Big-Bang doğru olsa bile öncesinin yokluk veya hiçlik olduğu iddiası pek çok bilim insanı için problem. Geçenlerde Celal Şengör bu konuda Anaksimendros'a gönderme yaparak bilimin ''sonsuzluk'' kavramına yöneldiğini söylemişti. Maddenin sonsuzluğu iddiasıyla uyuşması açısından da evrenin ( maddenin) sonsuzdan gelip sonsuza gittiği yolundaki görüşün belirleyicilik kazanacağını düşünüyorum.
evrenin sonsuzdan gelip sonsuza gitmesi mantığa aykırı değil mi? sonsuzdan gelip sonsuza gidiyorsa big bang de olmamış anlamına gelir. big bang olmamış olabilir mi? bilim evrenin big bang ile başladığını söylemiyor mu?